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Abstract. To describe metal surfaces efficiently and accurately, an embedding atom-jellium model is pro-
posed. Within density functional theory, we consider a multiscale scheme that combines jellium and atom-
istic approaches. We use the former to model layers deep inside a metal surface to reduce the computational
cost and the later to maintain the accuracy required for chemical bonding. Work functions of Al(111) and
Cu(111) surfaces are studied using this model with comparisons to all-atom and pure jellium models. The
much closer results of the embedding atom-jellium model to the all-atom results than to the pure jellium
results show a good prospect for our approach in large-scale density functional calculations.

PACS. 71.15.Dx Computational methodology (Brillouin zone sampling, iterative diagonalization,
pseudopotential construction) – 73.21.Ac Multilayers – 73.30.+y Surface double layers, Schottky bar-
riers, and work functions

1 Introduction

The use of jellium to model metal dates back to Drude’s
work on conductivity. In the jellium model, nuclei and core
electrons are replaced by a uniform positive background.
Valence electrons move quantum mechanically in the field
of this positive background. Bardeen [1] demonstrated
that jellium is the simplest model to calculate electronic
structure of metal surfaces, and Lang and Kohn [2,3] were
the first to do self-consistent calculation using jellium to
study the properties of metal surfaces within density func-
tional theory (DFT) [4,5].

During the past decade, with developments in pseu-
dopotentials, iterative minimization algorithms and com-
puter hardware, accurate DFT calculations treating metal
surfaces in a slab model, in which all metal atoms are de-
scribed by pseudopotentials, have become routine [6], and
the less accurate jellium model of metal surfaces seems
outdated. However, on one hand, an all-atom calculation
for the adsorption of a not-so-small molecule such as C60

and/or organic molecules on metal surfaces is already
pushing the limit of today’s computation capacity [7,8].
On the other hand, qualitatively correct results have been
obtained by treating metal surface as a jellium for vari-
ous adsorption systems, from H [9] and H2O [10] to thin
films [11]. The jellium model still has its advantage of nu-
merical simplicity and can be taken as the simplest pseu-
dopotential.
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Here, unlike previous studies of using jellium to model
the whole metal surface in an adsorption system, we pro-
pose to combine the advantages of both atomic and jel-
lium pseudopotentials in the spirit of multiscale modeling
to study large molecule adsorption on metal surfaces. In
our embedding atom-jellium (EAJ) approach, the most
important interface region, which includes the adsorbate
molecule and the top metal layers, is described with the
accurate atomic pseudopotential. This region is embedded
in a jellium matrix, which is far enough from the interface
region that the jellium description is acceptable. In doing
so, computational cost is lowered without losing accuracy,
and long-range effect due to delocalized s-electrons can
be included. In this paper, as the first step of implement-
ing and validating the EAJ model, we study the work
functions of Al(111) and Cu(111) surfaces using the EAJ
model. We find that the EAJ model improves dramati-
cally over the simple pure jellium slab and gives results
very close to the all-atom results.

The paper is organized in the following manner: the
formulism is presented first in the method section, which is
followed by results and discussion of Al(111) and Cu(111).
The last section contains the final conclusions.

2 Method: DFT formulism for embedding
atom-jellium model

In the embedding atom-jellium model, the potential of
metal ions in deep surface is described by a jellium slab
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and the top surface region by atomistic pseudopotentials.
The positive ions in the jellium slab are replaced by a uni-
form positive background, which occupies a volume Ωjel

in the surface unit cell, as

njel (r) =
{
n+ for r ∈ Ωjel

0 otherwise. (1)

The parameter n+ corresponds to the average charge den-
sity of nuclei+core electrons in the metal. Each charge is
distributed in an effective volume, (4π/3) r2s , where rs is
the Wigner-Seitz radius. For a fcc metal, assuming Z as
the net charge of a nuclei-core electrons unit for each metal
atom, there is a simple relation

1
n+

=
4π
3
r2s =

a3

4Z
, (2)

where a is the lattice constant. A key element in our model
is that Z can be different than the positive charge in
a metal ion in the atomistic region. For example, only
s-electrons are included explicitly as valence electrons in
the jellium region but any combination of s-, p-, and
d-electrons can be included in the atomistic region.

We use a plane wave basis set for wave functions of
valence electrons and three-dimensional period boundary
conditions. With valence electrons, ions and a jellium slab
in the system, the ground state total energy functional in
DFT is

E = T0 [n (r)] +Exc [n (r)] +Ees [n (r)]

=
∑
i,k

wkfi,k

∫
d3rψ∗

i,k (r)
(
−∇

2

2

)
ψi,k (r)+Exc [n (r)]

+ EH [n (r)] + Epp [n (r)] +Eion−ion ({RI})
+ Eel−jel [n(r);n+]+Eion−jel ({RI}, n+)+Ejel−jel(n+).

(3)

The only difference from the conventional DFT is the elec-
trostatic energy Ees, which now includes contributions
from the jellium slab. Among them, Eion−jel and Ejel−jel

are constants for a fixed geometric configuration because
they are independent of electron density n(r), but these
two terms need to be included correctly in the total en-
ergy, which in turn will allow the correct calculation for
Hellmann-Feynman force. The self-consistent Kohn-Sham
equation is

(
−∇2

2
+ Vxc (r) + VH (r) + Vpp (r) + Vjel (r)

)
ψi,k (r) =

εi,kψi,k (r) , (4)

where the jellium potential

Vjel (r) = −
∫
d3r′

njel (r)
|r − r′| (5)

describes the Coulomb interaction between the positive
jellium slab and electrons.

Following the formulism of total energy calculation
with three-dimensional PBC [12,13], we can cast the en-
ergy between electrons and jellium into reciprocal space as

Eel−jel = −
∫

Ω

d3r n (r)
∫

Ω

d3r′ njel (r′) [χ (r, r′)]η→∞

= −
∫

Ω

d3r n (r)
∫

Ω

d3r′ njel (r′)
(

4π
Ω

)

×
∑
G �=0

1
|G|2 e

iG·(r−r′)

= −
(

4π
Ω

) ∑
G �=0

1
|G|2

∫
Ω

d3r n (r) eiG·r

×
∫

Ω

d3r′ njel (r′) e−iG·r′

= −Ω
∑
G �=0

4π
|G|2 n

∗ (G)njel (G)

= −Ω
∑
G �=0

Vjel (G)n∗ (G), (6)

where

Vjel (G) =
4π
|G|2njel (G) (7)

is the Fourier transform of the jellium potential Vjel (r).
Similarly, the energy between jellium and itself is

Ejel−jel =
1
2

∫
Ω

d3r njel (r)
∫

Ω

d3r′ njel (r′) [χ (r, r′)]η→∞

=
Ω

2

∑
G �=0

Vjel (G)n∗
jel (G) . (8)

Because the interaction between the ions and the jellium
is also straightforward Columb repulsion, the energy be-
tween them can be expressed as

Eion−jel =
∫

Ω

d3r njel (r)
∫

Ω

d3r′

×
∑

I

ZIδ (r′ − RI) [χ (r, r′)]η→∞

=
4π
Ω

∑
G �=0

∫
Ω

d3r njel (r) eiG·r 1
|G|2

×
∫

Ω

d3r′
∑

I

ZIδ (r′ − RI) e−iG·r′

= Ω
∑
G �=0

4π
|G|2 S (G)n∗

jel (G) , (9)

where

S (G) =
∑

I

(
ZI

Ω

)
e−iG·RI (10)
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Fig. 1. The planar average electron density (solid) and poten-
tial (dotted) in the z-direction (perpendicular to the surface)
for a 12-layer Al in EAJ model with 1-layer Al atom on each
side of the 10-layer Al jellium. Only half of the supercell is
shown.

is the structure factor of the ions. Finally, the force exerted
on the ions by the jellium is

Fion−jel ({RI}) = −∂Eion−jel

∂RI

= iΩ
∑
G �=0

G
4π
|G|2

(
ZI

Ω
e−iG·RI

)
n∗

jel (G) ,

(11)

which will be added to other contributions from electrons
and ions.

The EAJ model has been implemented in two popular
packages of DFT total energy calculations using a plane-
wave basis set, fhi98md [14] and VASP [15,16].

3 Results and discussion

To test whether EAJ model can describe well the prop-
erties of metal surfaces, we have studied the work func-
tions of Al(111) and Cu(111) surfaces. Bulk Al and Cu
both have fcc structure. We use an ultra-soft pseudopoten-
tial [17] for metal atoms. The DFT exchange-correlation
functional we use is the local density approximation
(LDA). With these choices, the lattice constant is 3.98
and 3.52 Å for fcc Al and Cu, respectively. The (111)
surface has a hexagonal supercell with one atom in each
layer. For this supercell, a Monkhorst-Pack [18] k-point
mesh of 23× 23× 1 with 56 irreducible points is found to
be sufficient. The energy cutoff is 250 eV.

In Figure 1, the planar average electron density and
total effective potential are plotted in the z-direction for
a Al(111) surface, which is modeled by a 12-layer EAJ
slab. The symmetric supercell consists of a 10-layer Al
jellium with a 1-layer Al atom on each side of the jellium.
The vacuum in the z-direction is about 15 Å to ensure
a good calculation of work function for the surface. For
the half of the supercell that is shown, the jellium edge is

Fig. 2. Work function of Al surface as a function of the number
of layers. Three different models are shown together: all atom
(solid line with squares), EAJ (dashed line with triangles) and
pure jellium (dotted line with circles).

Table 1. Work function (eV) of Al(111) and Cu(111) calcu-
lated in three different models.

Atom EAJ Jellium
Al(111) 4.21 4.20 3.78
Cu(111) 5.24 5.17 3.55

at z = 11.5 Å. The equilibrium distance between the Al
atom and jellium is 1.65 Å, which is smaller than the in-
terlayer distance of 2.30 Å for an all-atom Al(111) surface.
The electron density fluctuates around the jellium edge.
The amplitude of the fluctuation is reduced going to the
center of the positive jellium background. This fluctuation
has the characteristic of Friedel oscillations, as expected.
These features correspond well with the total effective po-
tential shown on the right in Figure 1.

To model a semi-infinite metal surface with a slab of
finite thickness, the convergence of the properties with re-
spect to the thickness, or the number of layers in the slab,
needs to be checked because the properties of a metal thin
film are subject to the quantum size effect (QSE) [19].
With more and more layers in the z-direction, the surface
bands are shifted down to touch the Fermi level one by
one. As the thickness of the slab increases, the gap be-
tween the surface bands decreases, and so does the oscil-
lation in the QSE. The QSE of work function for Al(111)
is shown in Figure 2 for three different slab models. The
QSE for a pure jellium slab is the largest among the three
slabs. The work function converges to 3.78 eV for a pure
jellium Al slab, which is 0.4 eV smaller than the all-atom
Al slab. As shown by the dashed line for EAJ model, if the
top layer of jellium is replaced by an Al atom, the work
function improves dramatically, in agreement with the all-
atom result. The converged work functions are also listed
in Table 1. The opposite trend of QSE for EAJ and all-
atom model is due to the different symmetries of the slabs;
for the EAJ slab, there is always a mirror plane at z = 0.

Although the work function for Al(111) can be de-
scribed well by EAJ instead of all-atom model, it does
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Fig. 3. Work function of Cu surface as a function of the num-
ber of layers. Three different models are shown together, all
atom (solid line with squares), EAJ (dashed line with trian-
gles) and pure jellium (dotted line with circles).

not reduce the computational cost because each Al jellium
also has three valence electrons. To fulfill the motivation
of using EAJ model to reduce the computational cost in
a multi-scale sense, we study a Cu(111) surface. Cu has
a filled valence d shell, so a Cu jellium has 10 fewer elec-
trons than a Cu atom. In Figure 3, we show the results
of the three slab models for a Cu(111) surface. The pure
jellium model differs by 1.7 eV from the all-atom result,
which demonstrates the importance of the contribution
from d electrons. Our EAJ result of 5.17 eV compares fa-
vorably with the all-atom result of 5.24 eV (see Tab. 1).
This shows that the work function of a surface is largely
determined by the top layer. By replacing the deep lay-
ers with jellium with only one electron per site, a large
computational cost has been saved and the work function
is still described well. The saving comes from the reduc-
tion in the number of bands, which has a linear relation
with the computational cost. For example, for a 7-layer
slab, the CPU time for the EAJ model is only 40% of the
all-atom model.

The physical mechanism for large improvement on
work function by our EAJ model with respect to the sim-
ple jellium model is that the s electrons on the surface
are now described realistically, as in the presence of the
d and p electrons in the top layer. This is in the similar
spirit that by including the lattice effect in the stabilized-
jellium model [20–22], a better description of s electrons
and thus work function can be achieved than the simple
jellium model.

4 Conclusion

In conclusion, we have proposed and implemented the em-
bedding atom-jellium (EAJ) model, combining jellium and
atomic pseudopotentials, as a multiscale scheme to de-
scribe the properties of metal surfaces. We have shown
that the work functions of Al(111) and Cu(111) can be
well described in the EAJ model. The improvement of
the work function for EAJ model over pure jellium model
is dramatic for both simple metal Al with only sp elec-
trons and noble metal Cu with filled d electrons. Studies
of chemisorption with the EAJ model in large-scale den-
sity functional calculations are in progress.

This work was supported by DOE/Basic Energy Sci-
ence/Computational Material Science under Contract No. DE-
FG02-97ER45660.
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